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Abstract. The classical transverse field Ising spin-glass model with short-range interactions is
investigated beyond the mean-field approximation for a reald-dimensional lattice. We use an
appropriate non-trivial modification of the Bethe–Peierls method recently formulated for the Ising
spin-glass. The zero-temperature critical value of the transverse field and the linear susceptibility
in the paramagnetic phase are obtained analytically as functions of dimensionalityd. The phase
diagram is also calculated numerically for different values ofd. In the limit d → ∞, known
mean-field results are consistently reproduced.

The study of glasses is today one of the most relevant and actual problems in condensed
matter physics. Originally, the basic idea was to start from spin-glass (SG) models and to
extract as much as was possible at a mean-field-approximation (MFA) level [1–4]. However,
there have been recent studies [5–8] which have indicated difficulties in extending the
MFA scenario to realistic spin glasses with short-range interactions and decidinga priori
which properties survive and which must be appropriately modified. Renormalization group
treatments [9–11] for classical and quantum spin glasses and phenomenological studies [12]
do not seem to suggest a clear picture.

Quite recently, in an interesting paper [13], an approach beyond the MFA has been
achieved for ad-dimensional Ising SG model with short-range interactions on a real
lattice using an extension of the Bethe–Peierls approximation (BPA) [14] to the spin-glass
problem via the replica trick. This approach seems to be very promising for establishing
a direct link with the results obtained by different authors for the infinite-ranged version
and for controlling possible deviations for short-ranged glasses from the well acquired
MFA scenario. Of course, additional applications to more complex glassy systems and
improvements are necessary in order to understand something more about the role played
by the glassy fluctuations around the MFA solution for finite dimensionalities.

In this paper we explore the glassy properties of thed-dimensional classical transverse
field Ising SG model [15–17] with short-range interactions using an appropriate non-trivial
modification of the BPA formulated originally in [13] for the Ising SG. The model considered
here has received recent attention because it is a relatively simple SG model which reflects
some properties of the quantum counterpart [4] and it is a specific example of a classical
two-vector anisotropic SG. Therefore, the classical limit of the usual more complex quantum
Ising SG model in a transverse field with realistic exchange interactions may be useful for
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making contact [16, 17] with low-temperature properties of the so-called ‘proton glasses’
[15], such as the compounds Rb1−x(NH4)xH2PO4, and with the most recent experimental
magnetic data for the dipolar glass Li Ho0.167Y0.822F4 [18, 19].

As concerning the quantum realistic SG model, a lot of results have been obtained only
for d = 1 [20, 21] and for infinite-ranged interactions (d = ∞) [4, 19]. For the classical
counterpart, only results with infinite-ranged interactions have been derived [16, 17], in
particular atT = 0, and even in the ‘simple’ MFA limit the full phase diagram has not
yet been calculated. In any case, there are few studies about short-ranged glassy models.
It, therefore, appears quite relevant that the BPA allows us to describe some non-trivial
glassy properties of the model (in the paramagnetic phase) ford > 1. In particular, explicit
analytical results are obtained atT = 0 and the phase diagram in the (temperature, transverse
field)-plane is derived numerically for an arbitrary dimensionality.

The classical transverse field SG model considered here is described by the Hamiltonian
[15–17]

H = −1

2

∑
〈i,j〉

JijS
z
i S

z
j − 0

N∑
i=1

Sxi − h
N∑
i=1

Szi (1)

with (Szi )
2 + (Sxi )2 = 1. Here0 andh are transverse and longitudinal fields, respectively,

and the couplingsJij are independent random variables assuming values±J with equal
probability. In (1)

∑
〈i,j〉 . . . denotes a sum over nearest-neighbour pairs ofN sites on

a hypercubicd-dimensional lattice. Using the replica trick, the problem is reduced to
determining the ‘quenched average’:

Zn =
[

Tr exp

(
− β

n∑
α=1

Hα

)]
av

(2)

whereHα is the αth replica of the Hamiltonian (1) andβ = 1/T with the Boltzmann
constantkB ≡ 1. Working directly on the real lattice, the basic idea of the BPA for spin
glasses [13] is to take into account the correct interactions inside replicated clusters (cl),
constituted by a central spinS0 and its 2d nearest neighbours{Si; i = 1, . . . ,2d}, and
to describe the interactions of the cluster borders with the remnant (rm) of the system by
means of effective couplings among replicas to be determined self-consistently. With this
in mind, equation (2) for the Bethe–Peierls ansatz can be formally rewritten as [13]

Zn = Tr{Scl}

[
exp

(
− β

n∑
α=1

H(cl)
α

)
Tr{Srm} exp

(
− β

n∑
α=1

H(rm)
α

)]
av

(3)

≡ K(T , 0, h)Tr{Scl}[exp(−βHn)]av

where

H cl
α = −0

2d∑
k=0

Sxkα −
2d∑
i=1

J0iS
z
0αS

z
iα (4)

and H(rm)
α denotes replicated Hamiltonians of the cluster and remnant of the system

interacting with cluster borders, respectively, andK(T , 0, h) is a multiplicative constant
independent of lateral spins,

Tr{Scl} . . . =
1

πn(2d+1)

∫ 1

−1

2d∏
k=0

n∏
α=1

dSzkα√
1− (Szkα)2

· · · (5)
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and

Hn = −
n∑
α=1

2d∑
i=1

J0iS
z
0αS

z
iα −

βJ 2

2

n∑
α,α′=1

2d∑
i=1

λαα′S
z
iαS

z
iα′

− 1

β

n∑
α=1

2d∑
k=0

ln cosh[β0
√

1− (Szkα)2] − h
n∑
α=1

2d∑
i=1

Szkα (6)

with λαα′ = µαα′ for α 6= α′ and λαα = µ, which are parameters to be determined via
appropriate self-consistent equations. Here we have used the relationSxkα = ±(1−(Szkα)2)1/2
(k = 0, 1, . . . ,2d). Of course, if a transition from a paramagnetic phase to a SG one is
assumed to exist, one expectsµαα′ = 0 in the paramagnetic phase.

At this stage, the self-consistent equations which determine the effective couplingsµα,α′

andµ asn→ 0 are

〈SziαSziα′ 〉 = 〈Sz0αSz0α′ 〉 with i = 1, . . . ,2d (7)

where

〈· · ·〉 = Tr[exp(−βHn) . . .]av

Tr[exp(−βHn)]av
. (8)

It is easy to check that, forh = 0, due to the inversion symmetrySziα → −Sziα and
symmetry of the probability distribution forJij , equation (7) withα = α′ can be reduced
to the following:

χi = χ0 for i = 1, . . . ,2d (9)

where

χk = ∂〈Skα〉
∂h

∣∣∣∣
h=0

with k = 0, 1, . . . ,2d (10)

denotes the local susceptibility.
We are now in a position to obtain the explicit equations forµ which will also be used

to obtain the phase diagram of the model. Since it is expected thatµα,α′ → 0 approaching
the spin-glass transition from below, forn→ 0, one obtains ath = 0

〈SzkαSzkα′ 〉 = βJ 2µαα′
2d∑
i=1

[〈SzkSzi 〉0]av+O(µ2
α,α′) (k = 0, 1, . . . ,2d) (11)

where

〈· · ·〉0 = 1

π2d+1Z0

∫ 1

−1

2d∏
k=0

dSzk√
1− (Szk)2

exp(−βH0) . . . (12)

with

H0 = −
2d∑
i=1

J0iS
z
0S

z
i −

βJ 2

2
µ

2d∑
i=1

(Szi )
2− 1

β

2d∑
k=0

ln cosh[β0
√

1− (Szk)2]. (13)

In equation (12)Z0 denotes the normalization factor. The term−h∑2d
k=0 S

z
k must be added

to the right-hand side of (13) when it is necessary. So, ath = 0 due to the translational
symmetry for the sample-averaged system and assumingµαα′ = 0 at and above the glassy
transition line (to be determined), the self-consistent equation (7) forα 6= α′ andα = α′
reduces, respectively, to

[〈(Szi )2〉20]av+ (2d − 1)[〈Szi Szj 〉20]av = 2d[〈Sz0Szj 〉20]av (i 6= j = 1, . . . ,2d) (14)
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and

[〈(Szi )2〉0]av = [〈(Sz0)2〉0]av (i = 1, . . . ,2d) (15)

wherei 6= j denote arbitrary lateral sites of the cluster with the central spinS0.
By solving equations (14) and (15), it is possible to obtain the phase diagram of our

model in the (T , 0) plane. Explicit results can be derived analytically only atT = 0. As
T → 0, introducingµ = βµ which is finite, with the help of equation (12) and choosing
i = 1 in equation (15), one obtains

µ = 1

J 2

0 −
√
02− 4(2d − 1)J 2

2
. (16)

Hence taking into account equation (9) one finds, in the paramagnetic phase atT = 0, the
linear susceptibility

χ = 2
0 +

√
02− 4(2d − 1)J 2

(0 +
√
02− 4(2d − 1)J 2)2− 4J 2

. (17)

Now, we calculate the critical value0c at T = 0 of the transverse field using equations (14)
and (16). Fori = 1 and j 6= 1, with some algebra we rewrite (14), asT → 0, in the
following form:

(0c− µcJ
2)4− 2dJ 2(0c− µcJ

2)2+ (2d − 1)J 4 = 0 (18)

with

µcJ
2 = 1

2[0c−
√
02

c − 4(2d − 1)J 2].

From this equation one easily obtains

0c = 2(2d − 1)1/2J. (19)

As we see,χ is positive and has physical meaning only for0 > 0c. This suggests that the
expression (17) forχ is related only to the paramagnetic phase.

For (0 − 0c)/0c� 1 equation (17) yields

χ ≈


(2d − 1)1/2

2J (d − 1)

[
1− d

√
2

d − 1

(
0 − 0c

0c

)1/2

+O
(
0 − 0c

0c

)]
for d 6= 1

1

2J
√

2

(
0 − 0c

0c

)−1/2[
1+O

(
0 − 0c

0c

)1/2]
for d = 1.

(20)

As an ‘a posteriori’ justification of the correctness of the glassy BPA (3), it is easy to check
analytically that using the rescalingJ → J/

√
2d one findsµ = 2dχ and we get atT = 0

for d →∞
χ = 1

2J 2
[0 − (02− 02

c)
1/2] with 0c = 2J +O(d−1/2).

These results reproduce exactly those obtained atT = 0 for the same SG model but with
infinite-ranged interactions [16]. This partial result supports the validity of the BPA for
SGs.

The situation ford = 1 with a divergence of the linear susceptibility atT = 0 as
0 → 0+c can be simply explained. With the dichotomic probability distribution of one-
dimensional nearest-neighbour couplingsJ (i, i + 1) ≡ Ji (Ji = ±J with J > 0), after the
gauge transformation of spin variables

Szi → sign(J1) . . . sign(Ji−1)S
z
i (21)
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the system can be reduced to the uniform ferromagnet in an external transverse field
0. Therefore, it is natural to expect that at0 = 0c the ferromagnetic phase transition
with a divergent linear susceptibility occurs. Indeed, a more detailed analysis of the one-
dimensional case shows that atT = 0 the linear susceptibilityχ can be calculated exactly
for the paramagnetic phase. The divergence ofχ is the same as that obtained within the
BPA for the one-dimensional system.

For arbitrary T and 0, from equations (14) and (15) one can calculate numerical
equilibrium properties of our model in the paramagnetic phase. In particular, in figure 1 we
show the phase diagram in the (0, T )-plane for differentd. We have conveniently scaled
variablesT and 0 to reproduce the results at a very high dimensionality. In figure 2 a
variation of the rescaled critical temperature with a dimension at0 = 0 is plotted.

Figure 1. The phase diagram of the classical transverse Ising spin glass with short-range
interaction within the Bethe–Peierls approximation for spatial dimensionsd = 2, 3, 4, 5, 6.
The temperatureT and transverse field0 are rescaled by the factor(2d)−1/2. The larger
the dimension, the higher the corresponding line. HereJ ≡ 1.

In conclusion, we have studied some relevant aspects of the classical transverse field
short-ranged Ising SG in the paramagnetic phase for arbitrary dimensionalityd. We expect
that our results may also be useful for explaining some properties of the quantum counterpart
of the model considered here. However, some questions remain to be answered. For
example, on the basis of the general self-consistent equation (7) it is interesting to find
solutions withµαα′ 6= 0 in order to see whether the BPA is able to describe correctly
our model in the SG phase at arbitrary dimensionalities. Within the present calculations,
working in the paramagnetic phase, this is practically impossible, since the complicated
integral (12) has been reduced atT = 0 to an asymptotic form which is Gaussian-like. Such
an asymptoptic form is insufficient when parametersµαα′ are included even in the replica
symmetric form. Therefore, further work will be necessary to elucidate these problems.
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Figure 2. The rescaled critical temperatureTc(2d)−1/2 for 0 = 0 against the dimensiond. Here
J ≡ 1.
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